On the Multiplicity Conjecture for Non-cohen-macaulay Simplicial Complexes
نویسنده
چکیده
We prove a reformulation of the multiplicity upper bound conjecture and use that reformulation to prove it for three-dimensional simplicial complexes and homology manifolds with many vertices. We provide necessary conditions for a Cohen-Macaulay complex with many vertices to have a pure minimal free resolution and a characterization of flag complexes whose minimal free resolution is pure.
منابع مشابه
Cohen-Macaulay-ness in codimension for simplicial complexes and expansion functor
In this paper we show that expansion of a Buchsbaum simplicial complex is $CM_t$, for an optimal integer $tgeq 1$. Also, by imposing extra assumptions on a $CM_t$ simplicial complex, we provethat it can be obtained from a Buchsbaum complex.
متن کاملFace ring multiplicity via CM-connectivity sequences
The multiplicity conjecture of Herzog, Huneke, and Srinivasan is verified for the face rings of the following classes of simplicial complexes: matroid complexes, complexes of dimension one and two, and Gorenstein complexes of dimension at most four. The lower bound part of this conjecture is also established for the face rings of all doubly Cohen-Macaulay complexes whose 1-skeleton’s connectivi...
متن کاملBetti Numbers of Graded Modules and the Multiplicity Conjecture in the Non-cohen-macaulay Case
Abstract. We use the results by Eisenbud and Schreyer [3] to prove that any Betti diagram of a graded module over a standard graded polynomial ring is a positive linear combination Betti diagrams of modules with a pure resolution. This implies the Multiplicity Conjecture of Herzog, Huneke and Srinivasan [5] for modules that are not necessarily Cohen-Macaulay. We give a combinatorial proof of th...
متن کاملON THE h-VECTORS OF COHEN-MACAULAY FLAG COMPLEXES
Starting from an unpublished conjecture of Kalai and from a conjecture of Eisenbud, Green and Harris, we study several problems relating h-vectors of Cohen-Macaulay, flag simplicial complexes and face vectors of simplicial complexes.
متن کاملOn a Conjecture by Kalai
We show that monomial ideals generated in degree two satisfy a conjecture by Eisenbud, Green and Harris. In particular we give a partial answer to a conjecture of Kalai by proving that h-vectors of flag Cohen-Macaulay simplicial complexes are h-vectors of Cohen-Macaulay balanced simplicial complexes.
متن کامل